Lecture 6: Message Passing Interface

Introduction

The basics of MPI

Some simple problems

More advanced functions of MPI
A few more examples

CA463D Lecture Notes (Martin Crane 2013)

50

When is Parallel Implementation Useful

* |n general it is useful for Large problems

* Problems suitable for parallelisation, i.e. you know
what speed-up to expect

* You need to be able to recognise them
* Three types of problems are suitable:

— Parallel Problems
— Regular and Synchronous Problems
— Irregular and/or Asynchronous Problems

CA463D Lecture Notes (Martin Crane 2013) 51

When is Parallel Implementation Useful:
Type |
* Parallel problems:
— The problem can be broken down into subparts

— Each subpart is independent of the others

— No communication is required, except to split up the
problem and combine the final results

— Linear speed-up can be expected

 Example of this is: Monte-Carlo simulations

CA463D Lecture Notes (Martin Crane 2013)

52

When is Parallel Implementation Useful:
Type ll

Regular and Synchronous Problems:

— Same instruction set (regular algorithm) applied to all data

— Synchronous communication (or close to): each processor finishes
its task at the same time

— Local (neighbour to neighbour) and collective (combine final
results) communication

Speed-up based on the computation:communication ratio

If it is large, expect good speed-up for local communications
& ok speed-up for non-local communications

Ex: Fast Fourier transforms (synchronous), matrix-vector
products, sorting (loosely synch.)

When is Parallel Implementation Useful:
Type Il

* |rregular and/or Asynchronous Problems:

— Irregular algorithm which cannot be implemented efficiently
except with message passing and high communication overhead

— Communication is usually asynchronous and requires careful
coding and load balancing

— Often dynamic repartitioning of data between processors is
required

— Speed-up is difficult to predict; if the problem can be split up into
regular and irregular parts, this makes things easier

* Ex: Melting ice problem (or any moving boundary
simulation)

CA463D Lecture Notes (Martin Crane 2013) 54

Example 1: matrix-vector product

Q11 A1z Q13 Aqq by Cq
(21 Q22 Q23 Q24| y [|b, — €2
d31 A3z 0433 d34 b, C3
Ag1 Q42 Qg3 Qyq b, Cy
C1:a11><b1+a12Xb2+a13><b3+a14><b4
W|th-< Cor = An1q X bl ~+ as»o X b2 + aAr3 X b3 + Ary X b4_
C3:a31><b1+a32Xb2+a33Xb3+a34Xb4
C2:a41><b1+a42Xb2+a43Xb3+a44Xb4

* A parallel approach:
* Each element of vector ¢ depends on vector b and only one line of A
e Each element of ¢ can be calculated independently from the others
« Communication only needed to split up the problem and combine the
final results

 =>alinear speed-up can be expected for large matrices

CA463D Lecture Notes (Martin Crane 2013) 55

Example 2: : Monte-Carlo calculation of Pi

Quadrant of a Unit Circle with
Random distribution of points

e nt=3.14159....= area of a circle of radius 1
* 1/4 = fraction of the points within the circle quadrant
* The more points, the more accurate the value for mtis

CA463D Lecture Notes (Martin Crane 2013) 56

Example 2: Monte-Carlo calculation of
Pi (Cont’d)

* A parallel approach:
— Each point is randomly placed within the square

— The position of each point is independent of the position of the
others

— We can split up the problem by letting each node randomly place
a given number of points

— Communication is only needed to specify the number of points
and combine final results
 =>3linear speed-up can be expected, allowing for a larger
number of points and therefore a greater accuracy in the
estimation of .

CA463D Lecture Notes (Martin Crane 2013) 57

Example 3: A More Real Problem

After each move, the chess software 3 2
must find the best move within a set .
=>This set is large, but finite)
Each move from this set can be evaluated S
independently & the set can be partitioned o /

Communication is only needed to split up the problem and
combine the final results

=> A linear speed-up can be expected

=> This means that, in a reasonable time, moves can be studied
more thoroughly

=> This depth of evaluation is what makes the software more
competitive

Some background on MPI

Developed by MPI forum (made up of Industry, Academia and Govt.)

They established a standardised Message-Passing Interface (MPI-1) in
1994

It was intended as an interface to both C and FORTRAN.

C++ bindings were deprecated in MPI-2. Some Java bindings exist but
are not standard yet.

Aim was to provide a specification which can be implemented on any
parallel computer or cluster; hence portability of code was a big aim.

CA463D Lecture Notes (Martin Crane 2013) 59

Advantages of MPI

+ Portable, hence protection of software investment

+ A standard, agreed by everybody

+ Designed using optimal features of existing message-passing libraries
+ “Kitchen-sink” functionality, very rich environment (129 functions)

+ Implementations for F77, C and C++ are freely downloadable

....... & It’s Disadvantages

— “Kitchen-sink” functionality, makes it hard to learn all (unnecessary: a
bare dozen are needed in most cases)

— Implementations on shared-memory machines is often quite poor,
and does not suit the programming model

— Has rivals in other message-passing libraries (e.g. PVM)

CA463D Lecture Notes (Martin Crane 2013) 60

MPI Preliminaries...

 MPI provides support for:
— Point-to-point & collective (i.e. group) communications

— Inquiry routines to query the environment (how many nodes
are there, which node number am |, etc.)

— Constants and data-types

 We will start with the basics: initialising MPI, and using
point-to-point communication

MPI Preliminaries... (Cont’d)

* Naming convention
— All MPl identifiers are prefixed by ‘MPI .
— Croutines contain lower case (i.e. MPI Init’),
— Constants are all in upper case (e.g. MPI FLOAT isan MPIC
data-type).
— Croutines are actually integer functions which return a status
code (you are strongly advised to check these for errors!).
* Running MPI

— Number of processors used is specified in the command line,
when running the MPI loader that loads the MPI program onto
the processors, to avoid hard-coding this into the program

— e.g.mpirun -np N exec

CA463D Lecture Notes (Martin Crane 2013) 62

MPI Preliminaries... (Cont’d)

* Writing a program using MPI: what is parallel, what is not
- Only one program is written. By default, every line of the code is
executed by each node running the program.
- E.g. if the code contains int result=0, each node will locally
create a variable and assign the value.
 When a section of the code needs to be executed by only a subset of
nodes, it has to be explicitly specified.
* E.g., providing that we are using 8 nodes, and that MyID is a
variable storing the rank of the node (from 0 to 7, we will see how to
get it later), this section of code assigns to result to zero for the

first half of them, and 1 for the second.

int result;
if (MyID < 4) result = 0;
else result = 1;

Common MPI Routines

 MPI has a ‘kitchen sink” approach of 129 different routines
* Most basic programs can get away with using six.
* As usual use #finclude “mpi.h” in C.

MPI Init Initialise MPI computation

MPI Finalize Terminate MPI computation
MPI Comm size Determine number of processes
MPI Comm rank Determine my process number

MPI Send, MPI Isend Blocking, non-blocking send
MPI Recv, MPI Irecv Blocking, non-blocking

CA463D Lecture Notes (Martin Crane 2013) 64

Common MPI Routines (Cont’d):

MPI Initialisation, Finalization
In all MPIl-written programs, MPI must be initialised before use, and

finalised at the end.

All MPIl-related commands and types must be handled within this
section of code:

"MPI Init Initialise MPI computation

MPI Finalize Terminate MPIl computation

MPI Init takestwo parameters asinput(argc and argv),

— Itis used to start the MPI environment, create the default communicator (more
later) and assign a rank to each node.

MPI Finalize cleans up all MPI state. Once this routine is called,
no MPI routine (even MPI_INIT) may be called.

The user must ensure that all pending communications involving a
process completes before the process calls MPI Finalize.

CA463D Lecture Notes (Martin Crane 2013)

Common MPI Routines (Cont’d):

Basic Inquiry Routines
At various stages in a parallel-implemented function, it may be useful
to know how many nodes the program is using, or what the rank of
the current node is.

The MPI Comm size function returnsthe number of processes/
nodes as an integer, taking only one parameter, a communicator.

In most cases you will only use the default Communicator:
MPI_ COMM WORLD.

The MPI Comm rank function is used to determine what the rank
of the current process/node on a particular communicator.

E.g. if there are two communicators, it is possible, and quite usual,
that the ranks of the same node would differ.

Again, in most cases, this function will only be used with the default
communicator as an input (MPI_COMM WORLD), and it will return (as
an integer) the rank of the node on that communicator.

CA463D Lecture Notes (Martin Crane 2013) 66

Common MPI Routines (Cont’d):
Point-to-Point communications in MPI

* This involves communication between two processors, one sending,
and the other receiving.
e Certain information is required to specify the message:
— ldentification of sender processor
— |dentification of destination/receiving processor
— Type of data (MPI INT,MPI FLOAT etc)
— Number of data elements to send (i.e. array/vector info)
— Where the data to be sent is in memory (pointer)
— Where the received data should be stored in (pointer)

CA463D Lecture Notes (Martin Crane 2013) 67

Common MPI Routines (Cont’d):
Sending data MPI_Send, MPI_Isend

* MPI Send is used to perform a blocking send, (i.e. process waits for

the communication to finish before going to the next command).

int MPI_Send(void *buf, int count, MPI Datatype datatype, int
dest, int tag, MPI Comm comm)

* This functions takes six parameters:

the location of the data to be senti.e. a pointer (input parameter)
the number of data elements to be sent (input parameter)

the type of data e.g. MPI INT, MPI FLOAT, etc. (input parameter)
the rank of the receiving/destination node (input parameter)

a tag for identification of the communication (input parameter)

the communicator to be used for transmission (input parameter)

° MPI Isend is hon-blocking, so an additional parameter, to allow for
verification of communication success is needed.

* Itis a pointer to an element of type MPI Request.

CA463D Lecture Notes (Martin Crane 2013) 68

Common MPI Routines (Cont’d):
Receiving data MPI_Recv, MPI_Irecv

* MPI Recv is used to perform a blocking receive, (i.e. process waits

for the communication to finish before going to the next command).

int MPI Recv(void *buf, int count, MPI Datatype datatype, int
source, int tag, MPI Comm comm, MPI Status *status);

* This functions takes seven parameters:
— the location of the receive buffer i.e. a pointer (output parameter)
— the max number of data elements to be received (input parameter)
— the type of data e.g. MPI INT,MPI FLOAT, etc. (input parameter)
— the rank of the source/sending node (input parameter)
— a tag for identification of the communication (input parameter)
— the communicator to be used for transmission (input parameter)
— a pointer to a structure of type MPI Status, contains source processor’s
rank, communication tag, and error status (output parameter)
* For the non-blocking MPI Irecv, MPI Request replaces
MPI Status.

CA463D Lecture Notes (Martin Crane 2013) 69

A first MPIl example: Hello World.

#include <mpi.h>
int main(int argec, char *argv([]) {
int myid, size;
MPI Init(&argc, &argv);
MPI Comm rank (MPI COMM WORLD, &myid) ;
MPI Comm size (MPI COMM WORLD, &size);
printf ("process %d out of %d says Hello\n", myid, size) ;
MPI Finalize();
return O;

CA463D Lecture Notes (Martin Crane 2013) 70

First “rea

#include <mpi.h>
int main(int argc, char *argv[]) {
int rank, value, size, length =1, tag = 1;
MPI Status status;
/* initialize MPI and get own id (rank) */
MPI Init(&argc, &argv) ;
MPI_Comm_ rank (MPI_COMM WORLD, &myid) ;
MPI_Comm size (MPI_COMM WORLD, &size);
if (size'=2) {

}

if (myid == 0) {

}

else {

return O;

|II

MPI program: Exchanging 2 Values

printf ("use exactly two processes\n") ;
exit (1),

otherid = 1; myvalue = 14;

otherid = 0; myvalue = 25;

printf ("process %d sending %d to process %d\n", myid, myvalue, otherid) ;
/* Send one integer to the other node (i.e. "“otherid”) */
MPI Send(&myvalue,l,MPI INT,otherid, tag,MPI COMM WORLD) ;
/* Receive one integer from any other node */
MPI Recv (&othervalue,l MPI INT 6 MPI_ ANY SOURCE,

MPI ANY TAG,MPI_COMM WORLD, &status)
printf ("process %d received a %d\n", myid, othervalue) ;
MPI Finalize(); /* Terminate MPI */

CA463D Lecture Notes (Martin Crane 2013) 71

Compiling and Running MPI Programmes

To compile programs using MPI, you need an “MPIl-enabled” compiler.

On our cluster, we use mpicc to compile C programs containing MPI
commands or mpicxx for C++.

Before running an executable using MPI, you need to make sure the
"multiprocessing daemon" (MPD) is running.

It makes the workstations into "virtual machines" to run MPI programs.

When you run an MPI program, requests are sent to MPD daemons to
start up copies of the program.

Each copy can then use MPI to communicate with other copies of the
same program running in the virtual machine. Just type “mpd &” in the
terminal.

)

To run the executable, type “mpirun -np N./executable file”,
where N is the number to be used to run the program.

This value is then used in your program by MPI Init to allocate the
nodes and create the default communicator.

CA463D Lecture Notes (Martin Crane 2013) 72

Example 3:“Ring” Communication

#include <mpi.h>
int main (int argc, char *argv[]) {

int rank, value, size;
MPI Status status;

/* initialize MPI and get own id (rank) */

MPI Init(&argc, &argv) ;
MPI Comm rank (MPI_COMM WORLD, &rank) ;
MPI_Comm size (MPI_COMM WORLD, &size);

do

{
if (rank == 0) {
scanf ("%d", &value) ;
/* Master Node sends out the value */
MPI_Send(&value, 1, MPI_INT, rank + 1, O, MPI_COMM_WORLD);
}
else {
/* Slave Nodes block on receive the send on the value */
MPI Recv(&value, 1, MPI INT, rank - 1, 0, MPI COMM WORLD, &status);
if (rank < size - 1) {
MPI_Send(&value, 1, MPI_INT, rank + 1, 0, MPI_COMM WORLD) ;
}
printf ("process %d got %d\n", rank, value) ;
} while (value >= 0) ;
/* Terminate MPI */

MPI Finalize() ;
return O;

CA463D Lecture Notes (Martin Crane 2013) 73

#include <mpi.h>
int main(int argc, char *argv[]) {
int A[4][4], b[4], c[4], line[4], temp[4], local value, myid;
MPI Init(&argc, &argv); MPI_Comm_rank(MPI_COMM;WORLD, &myid) ;
if (myid == 0) {
for (int i=0; i<4; i++) {

b[i] = 4 - i;
for (int 3j=0; 3j<4; j++)
A[i]l[j] =i + j; /* set some notional values for A, b */

}

uneror-ator 01, user a1 Example 4: Matrix-Vector

line[2]=A[0][2]; line[3]=A[0][3];

it (myid = 0) | Product Implementation

for (int i=1l; i<4; i++) {/* slaves do most of the multiplication */
temp[0]=A[i] [0] ;temp[1l] = A[i][1] ;temp[2] = A[i] [2] ,temp[3] = A[l][3],
MPI Send(temp, 4, MPI INT, i, i, MPI_COMM WORLD) ;
MPI Send(b, 4, MPI_ INT, i, i, MPI_COMM WORLD) ;

else {
MPI Recv(line, 4, MPI_ INT, O, myid, MPI_COMM WORLD, MPI_ STATUS IGNORE) ;

MPI Recv(b, 4, MPI INT, 0, myid, MPI_COMM WORLD, MPI_ STATUS IGNORE) ;
} {/* master node does its share of multiplication too*/
c[myid] = line[0] * b[O] + line[l] * b[1l] + line [2] * b[2] + 1line[3] * b[3];
if (myid '= 0) {
MPI_Send (&c[myid], 1, MPI_INT, 0, myid, MPI_COMM WORLD) ;
}

else {
for (int i=1; i<4; i++) {
MPI Recv(&c[i], 1, MPI_INT, i, i, MPI_COMM WORLD, MPI_ STATUS IGNORE) ;
}

}
MPI Finalize();

return O;
CA463D Lecture Notes (Martin Crane 2013) 74

int main(int argc, char *argv[]) {

All nodes d(ithis part

MPI_Init(&argc, &argv); Exa m p I e 5 : Pl

#define INT MAX 1000000000
int myid, size, inside=0, outside=0, points=10000; (: | | .t'
double x,y, Pi_comp, Pi real=3.141592653589793238462643; Ea (:LJ Ea IC)r1

MPI Comm rank (MPI_COMM WORLD, &myid) ;

MPI C i (MPI COMM WORLD, &si), M
g oo Implementation

for (int i=1l; i<size; i++) /* send out the value of points to all slaves */
MPI_Send(&points, 1, MPI_INT, i, i, MPI_COMM WORLD) ;
}
else
MPI_Recv (&points, 1, MPI_INT, O, i, MPI_COMM WORLD, MPI_STATUS_ IGNORE) ;
~rands=new double[2*points];
for (int i=0; i<2*points; i++) {
rands|[i]=random () ;
if (rands[i]<=INT MAX) i++ /* this random is within range */
}
for (int i=0; i<points;i++) {
x=rands[2*i] /INT MAX ;
y=rands[2*i+1] /INT MAX ;
if ((x*x+y*y)<1l) inside++ /* point is inside unit circle so incr var inside */

}

_delete[] rands;
if (myid == 0) {
for (int i=1; i<size; i++) {

int temp; /* master receives all inside values from slaves */
MPI Recv(&temp, 1, MPI_INT, i, i, MPI_COMM WORLD, MPI STATUS IGNORE) ;
inside+=temp; } /* master sums all insides sent to it by slaves */

}
else
MPI Send(&inside, 1, MPI_INT, O, i, MPI COMM WORLD); /* send inside to master */
if (myid == 0) {
Pi comp = 4 * (double) inside / (double) (size*points) ;
cout << "Value obtained: " << Pi_comp << endl << "Pi:" << Pi_real << endl;}
MPI Finalize(); return 0; CA463D Lecture Notes (Martin Crane 2013) 75

Collective communications in MPI
Groups are sets of processors that communicate with each other in a
certain way.

Such communications permit a more flexible mapping of the language
to the problem (allocation of nodes to subparts of the problem etc).

MPI implements Groups using data objects called Communicators.

A special Communicator is defined (called ‘MPI COMM WORLD’) for the
group of all processes.

Each Group member is identified by a number (its Rank 0..n-1).

There are three steps to create new communication structures:
— accessing the group corresponding to MPI_COMM_WORLD,
— using this group to create sub-groups,

— allocating new communicators for this group.

We will see this in more detail in the last examples.

CA463D Lecture Notes (Martin Crane 2013) 76

Some Sophisticated MPI Routines

The advantage of the global communication routines below is that the
MPI system can implement them more efficiently than the programmer,
involving far less function calls.

Also the system will have more opportunity to overlap message
transfers with internal processing and to exploit parallelism that might
be available in the communications network.

MPI Barrier Synchronise

MPI Bcast Broadcast same data to all procs
MPI Gather Get data from all procs

MPI Scatter Send different data to all procs

MPI Reduce Combine data from all onto one proc

MPI Allreduce Combine data from all procs onto all procs

CA463D Lecture Notes (Martin Crane 2013) 77

Sophisticated MPI Routines:
MPI Barrier

MPI Barrier is used to synchronise a set of nodes.
int MPI Barrier(MPI Comm comm)
It blocks the caller until all group members have called it.

ie call returns at any process only after all group members have
entered the call.

This functions takes only parameter, the communicator (i.e.
group of nodes) to be synchronised.

As we previously saw with other functions, it will most of the
times be used with the default communicator,
MPI COMM WORLD.

CA463D Lecture Notes (Martin Crane 2013) 78

Sophisticated MP| Routines: MPI_Bcast

* MPI Bcast used to send data from one node to all the others

in one single command.

int MPI Bcast(void *buffer, int count, MPI Datatype
datatype, int root, MPI Comm comm)

* This functions takes five parameters: -
— location of data to be sent i.e. a pointer (input/output parameter)
— number of data elements to be sent (input parameter)
— type of data (input parameter)
— rank of the broadcast node (input parameter)
— communicator to be used (input parameter)

PO A PO A
P1 Bmadcasz: P11 A
P2 P2 A
P3 P3| A

CA463D Lecture Notes (Martin Crane 2013) 79

Sophisticated MPI Routines: MPI Gather

+ MPI Gather isused to gather on a single node data scattered over

a group of nodes.
int MPI_ Gather (void *sendbuf, int sendcnt, MPI Datatype sendtype,

void *recvbuf, int recvcnt, MPI Datatype recvtype, int root,
MPI Comm comm)
* This functions takes eight parameters: -

— location of data to be sent i.e. a pointer (input parameter)

— number of data elements to be sent (input parameter)

— type of data to be sent (input parameter)

— location of the receive buffer i.e. a pointer (output parameter)

— number of elements to be received (input parameter)

— type of data to be received (input parameter)

— rank of the sending node (input parameter

: POLAB|C|D PO A
— communicator to be used for
P1 Pt B
transmission. (input parameter) 5 -
Gather
p3 g P3| D

CA463D Lecture Notes (Martin Crane 2013) 80

Sophisticated MP| Routines: MPI Scatter

 MPI Scatter used to scatter data from single node to a group
int MPI_Scatter (void *sendbuf, int sendcnt, MPI Datatype
sendtype, void *recvbuf, int recvcnt, MPI Datatype recvtype, int
root, MPI Comm comm)
* This function takes eight parameters: -

— location of data to be sent i.e. a pointer (input parameter)

— number of data elements to be sent (input parameter)

— type of data to be sent (input parameter)

— location of the receive buffer i.e. a pointer (output parameter)

— number of elements to be received (input parameter)

— type of data to be received (input parameter)

— rank of the sending node (input parameter)

— communicator to be used for transmission. (input parameter)
FOIAIB|IC D PO A

Scatter —~
P1 = P1!B
P2 F2. C
D

P3 - P3
CAZ63DTécture Notes (Martin Crane 2013) 81

Sophisticated MP| Routines: MPI Reduce

 MPI Reduce used toreduce values on all nodes of a group to a
single value on one node using some reduction operation (sum etc).

int MPI Reduce (void *sendbuf, void *recvbuf, int count,
MPI Datatype datatype, MPI Op op, MPI Comm comm)

* This functions takes six parameters: -
— location of the data to be sent i.e. a pointer (input parameter)
— location of the receive buffer i.e. a pointer (output parameter)
— number of elements to be sent (input parameter)
— type of data e.g. MPI INT,MPI FLOAT, etc. (input parameter)
— operation to combine the results e.g. MPT SUM (input parameter)

— communicator used for transmission (input parameter)
Before MPI_Reduce After MPI_Reduce

Process 1 Process 2 Process 3 Process 4 Process 1 Process 2 Process 3 Process 4

1 2 3 2! 10

CA463D Lecture Notes (Martin Crane 2013) 82

Sophisticated MPI Routines: MPI_Allreduce

* MPI Allreduce is used to reduce values on all group nodes to a one value, and
send it back to all (i.e. equals MPI Reduce+MPI Bcast)

int MPI Allreduce (void *sendbuf, void *recvbuf, int count,
MPI Datatype datatype, MPI Op op, MPI Comm comm)

* This functions takes six parameters: -
— location of the data to be sent i.e. a pointer (input parameter)
— location of the receive buffer i.e. a pointer (output parameter)

— number of elements to be sent (input parameter)
— type of data e.g. MPI INT,MPI FLOAT, etc. (input parameter)

— operation to combine the results e.g. MPT SUM (input parameter)

— communicator used for transmission (input parameter)

Before MPI_Allreduce After MPI_Allreduce

Process 1 Process 2 Process 3 Process 4 Process 1 Process 2 Process 3 Process 4

1 2 3 4 1010110 |]10

CA463D Lecture Notes (Martin Crane 2013) 83

#include <mpi.h>
int main(int argc, char *argv[]) {
int A[4][4], b[4], c[4], line[4],temp[4], local value, myid;
MPI Init(&argc, &argv); MPI_Comm_rank(MPI_COMM;WORLD, &myid) ;
if (myid == 0) {
for (int i=0; i<4; i++) {
b[i] = 4 - 1i;
for (int j=0; j<4; j++)
A[i]l[j] =i + j; /* set some notional values for A, b */
}
1line[0]=A[0][0]; line[1]=A[0][1]; Exa m ple 6: A NeW
line[2]=A[0][2]; line[3]=A[0][3];
} °
Mp1_Beast (b,4,mp1_1nt, 0 ez_come worzo) V1@t riX-Vector Product
if (myid == 0) {
for (int i=0; i<4; i++) {/* slaves do most of the multiplication */
temp[0]=A[i] [0] ;temp[1l] = A[i][1] ;temp[2] = A[i] [2] ,temp[3] = A[i] [3];
MPI_Send(temp, 4, MPI_INT, i, i, MPI_COMM WORLD) ;
/* No need to send vector b here */

else {
MPI_Recv(line, 4, MPI_INT, O, myid, MPI_COMM WORLD, MPI_STATUS IGNORE) ;
/* No need to receive vector b here */
} {/* master node does its share of multiplication too*/
c[myid] = line[0] * b[O] + line[l] * b[1l] + line [2] * b[2] + 1line[3] * b[3];
if (myid '= 0) {
MPI_Send (&c[myid], 1, MPI_INT, 0, myid, MPI_COMM WORLD) ;
}
else {
{
for (int i=1; i<4; i++) {
MPI_Recv(&c[i], 1, MPI_INT, i, i, MPI_COMM WORLD, MPI_STATUS_IGNORE) ;
}
}

MPI_Finalize(); return O; CA463D Lecture Notes (Martin Crane 2013) 84

int main(int argc, char *argv[]) {
MPI Init(&argc, &argv); Exa m p I e 5 : A N eW P
#define INT MAX 1000000000
int myid, size, inside=0, outside=0, points=10000;

double x,y, Pi_comp, Pi real=3.141592653589793238462643; Calcu |at|0n

MPI Comm rank (MPI_COMM WORLD, &myid) ;

MPI Comm size (MPI_COMM WORLD, &size); I I t t'
/* Again send/receive replaced by MPI Bcast */ m p e m e n a IO n
MPI_Bcast(&points,1,MPI_INT, 0, MPI_COMM;WORLD);
rands=new double[2*points];
for (int i=0; i<2*points; i++) {
rands[i]=random () ;
if (rands[i]<=INT MAX) i++ /* this random is within range */
}
for (int i=0; i<points;i++) {
x=rands[2*i] /INT MAX ;
y=rands[2*i+1] /INT MAX ;
if ((x*x+y*y)<1l) inside++ /* point is inside unit circle so incr var inside */
}
delete[] rands;
if (myid == 0) {
for (int i=1l; i<size; i++) {

int temp; /* master gets all inside values from slaves */
MPI Recv(&temp, 1, MPI_ INT, i, i, MPI_COMM WORLD, MPI STATUS IGNORE) ;
inside+=temp; } /* master sums all insides sent to it by slaves */

}

else

MPI Send(&inside, 1, MPI_INT, O, i, MPI_COMM WORLD); /* send inside to master */

——*MPI_Reduce(&inside,&total,1,MPI_INT,MPI_SUM,O, MPI_COMM;WORLD);
if (myid == 0) {
Pi comp = 4 * (double) inside / (double) (size*points) ;
cout << "Value obtained: " << Pi_comp << endl << "Pi:" << Pi_real << endl;}
MPI Finalize(); return O;

CA463D Lecture Notes (Martin Crane 2013) 85

Using Communicators

* Creating a new group (and communicator) by excluding

the first node:

#include <mpi.h>
int main(int argc, char *argv[]) {

MPI Comm comm world, comm worker;
MPI Group group world, group worker;
comm world = MPI COMM WORLD;
MPI Comm group (comm world, &group world) ;
MPI Group excl (group world, 1, 0, &group worker) ;
/* process 0 not member */
MPI Comm create(comm world, group worker, &comm worker) ;

}
* Warning:
MPI Comm create () is a collective operation, so all processes in the old

communicator must call it - even those not going in the new communicator.
CA463D Lecture Notes (Martin Crane 2013) 86

Example 8: Using Communicators

#include <mpi.h>

#include <stdio.h>

#define NPROCS 8

int main(int argc, char *argv[]) {

int rank, newrank, sendbuf, recvbuf;
ranksl[4]={0,1,2,3}, ranks2[4]={4,5,6,7};
MPI Group orig group, new_group;
MPI_Comm new_comm

MPI Init (&argc, &argv);
MPI_Comm;rank(MPI_COMM;WORLD, &rank) ;
sendbuf = rank;

/* Extract the original group handle */
MPI Comm group (MPI_COMM WORLD, &orig group) ;

if (rank < NPROCS/2) {/* Split tasks into 2 distinct groups based on rank */

MPI Group_ incl (orig_group, NPROCS/2, ranksl, &new_group) ;
else
MPI Group incl (orig_group, NPROCS/2, ranks2, &new_group) ;
/* Create new communicator and then perform collective communications */
MPI Comm create (MPI_COMM WORLD, new_group, &new_comm) ;
MPI Allreduce (&sendbuf, &recvbuf, 1, MPI_INT, MPI_SUM, new_comm) ;
MPI Group rank (new_group, &new_rank) ;

printf (“rank= %d newrank= %d recvbuf= %d\n", rank, newrank, recvbuf) ;

MPI Finalize()
} CA463D Lecture Notes (Martin Crane 2013)

87

Final Reminder

MPI programs need specific compilers (e.g. mpicc), MPD

and mpirun.

MPI programs start with MPI Init and finish with
MPI Finalize,

Four functions for point-to-point communication,

Six more advanced functions, for synchronise, and perform
collective communication,

Nine functions (at least three!) to create new groups and
communicators,

Too many examples to remember everything.

CA463D Lecture Notes (Martin Crane 2013) 88

