
Lecture 6: Message Passing Interface

• Introduction

• The basics of MPI

• Some simple problems

• More advanced functions of MPI

• A few more examples

CA463D Lecture Notes (Martin Crane 2013) 50

When is Parallel Implementation Useful

• In general it is useful for Large problems

• Problems suitable for parallelisation, i.e. you know

what speed-up to expect

• You need to be able to recognise them

• Three types of problems are suitable:

– Parallel Problems

– Regular and Synchronous Problems

– Irregular and/or Asynchronous Problems

CA463D Lecture Notes (Martin Crane 2013) 51

When is Parallel Implementation Useful:

Type I

• Parallel problems:

– The problem can be broken down into subparts

– Each subpart is independent of the others

– No communication is required, except to split up the

problem and combine the final results

– Linear speed-up can be expected

• Example of this is: Monte-Carlo simulations

CA463D Lecture Notes (Martin Crane 2013) 52

When is Parallel Implementation Useful:

Type II

• Regular and Synchronous Problems:

– Same instruction set (regular algorithm) applied to all data

– Synchronous communication (or close to): each processor finishes

its task at the same time

– Local (neighbour to neighbour) and collective (combine final

results) communication

• Speed-up based on the computation:communication ratio

• If it is large, expect good speed-up for local communications

& ok speed-up for non-local communications

• Ex: Fast Fourier transforms (synchronous), matrix-vector

products, sorting (loosely synch.)

CA463D Lecture Notes (Martin Crane 2013) 53

When is Parallel Implementation Useful:

Type III

• Irregular and/or Asynchronous Problems:

– Irregular algorithm which cannot be implemented efficiently

except with message passing and high communication overhead

– Communication is usually asynchronous and requires careful

coding and load balancing

– Often dynamic repartitioning of data between processors is

required

– Speed-up is difficult to predict; if the problem can be split up into

regular and irregular parts, this makes things easier

• Ex: Melting ice problem (or any moving boundary

simulation)

CA463D Lecture Notes (Martin Crane 2013) 54

Example 1: matrix-vector product

CA463D Lecture Notes (Martin Crane 2013) 55

��

��

��

��

��� ��� ��� ���
���

���

���

���

���

���
��� ��� ���

���

���
���

��

��

��

��

X =

�� = 	 ��� × �� + ��� × �� +	��� × �� + ��� × ��

�� = 	 ��� × �� + ��� × �� +	��� × �� + ��� × ��

�� = 	 ��� × �� + ��� × �� +	��� × �� + ��� × ��

�� = 	 ��� × �� + ��� × �� +	��� × �� + ��� × ��

with

• A parallel approach:
• Each element of vector c depends on vector b and only one line of A

• Each element of c can be calculated independently from the others

• Communication only needed to split up the problem and combine the

final results

• => a linear speed-up can be expected for large matrices

Example 2: : Monte-Carlo calculation of Pi

• π = 3.14159….= area of a circle of radius 1

• π/4 ≈ fraction of the points within the circle quadrant

• The more points, the more accurate the value for π is

CA463D Lecture Notes (Martin Crane 2013) 56

Quadrant of a Unit Circle with

Random distribution of points

Example 2: Monte-Carlo calculation of

Pi (Cont’d)

• A parallel approach:

– Each point is randomly placed within the square

– The position of each point is independent of the position of the

others

– We can split up the problem by letting each node randomly place

a given number of points

– Communication is only needed to specify the number of points

and combine final results

• => a linear speed-up can be expected, allowing for a larger

number of points and therefore a greater accuracy in the

estimation of π.
CA463D Lecture Notes (Martin Crane 2013) 57

Example 3: A More Real Problem

• After each move, the chess software

must find the best move within a set

=>This set is large, but finite

• Each move from this set can be evaluated

independently & the set can be partitioned

• Communication is only needed to split up the problem and

combine the final results

• => A linear speed-up can be expected

• => This means that, in a reasonable time, moves can be studied

more thoroughly

• => This depth of evaluation is what makes the software more

competitive
CA463D Lecture Notes (Martin Crane 2013) 58

Some background on MPI

• Developed by MPI forum (made up of Industry, Academia and Govt.)

• They established a standardised Message-Passing Interface (MPI-1) in

1994

• It was intended as an interface to both C and FORTRAN.

• C++ bindings were deprecated in MPI-2. Some Java bindings exist but

are not standard yet.

• Aim was to provide a specification which can be implemented on any

parallel computer or cluster; hence portability of code was a big aim.

CA463D Lecture Notes (Martin Crane 2013) 59

Advantages of MPI
+ Portable, hence protection of software investment

+ A standard, agreed by everybody

+ Designed using optimal features of existing message-passing libraries

+ “Kitchen-sink” functionality, very rich environment (129 functions)

+ Implementations for F77, C and C++ are freely downloadable

− “Kitchen-sink” functionality, makes it hard to learn all (unnecessary: a

bare dozen are needed in most cases)

− Implementations on shared-memory machines is often quite poor,

and does not suit the programming model

− Has rivals in other message-passing libraries (e.g. PVM)

CA463D Lecture Notes (Martin Crane 2013) 60

…….& It’s Disadvantages

MPI Preliminaries…

• MPI provides support for:

– Point-to-point & collective (i.e. group) communications

– Inquiry routines to query the environment (how many nodes

are there, which node number am I, etc.)

– Constants and data-types

• We will start with the basics: initialising MPI, and using

point-to-point communication

CA463D Lecture Notes (Martin Crane 2013) 61

MPI Preliminaries… (Cont’d)

• Naming convention

– All MPI identifiers are prefixed by ‘MPI_’.

– C routines contain lower case (i.e. ‘MPI_Init’),

– Constants are all in upper case (e.g. ‘MPI_FLOAT’ is an MPI C

data-type).

– C routines are actually integer functions which return a status

code (you are strongly advised to check these for errors!).

• Running MPI

– Number of processors used is specified in the command line,

when running the MPI loader that loads the MPI program onto

the processors, to avoid hard-coding this into the program

– e.g. mpirun -np N exec

CA463D Lecture Notes (Martin Crane 2013) 62

MPI Preliminaries… (Cont’d)

CA463D Lecture Notes (Martin Crane 2013) 63

int result;

if(MyID < 4) result = 0;

else result = 1;

• Writing a program using MPI: what is parallel, what is not

− Only one program is written. By default, every line of the code is

executed by each node running the program.

− E.g. if the code contains int result=0, each node will locally

create a variable and assign the value.

• When a section of the code needs to be executed by only a subset of

nodes, it has to be explicitly specified.

• E.g., providing that we are using 8 nodes, and that MyID is a

variable storing the rank of the node (from 0 to 7, we will see how to

get it later), this section of code assigns to result to zero for the

first half of them, and 1 for the second.

Common MPI Routines

• MPI has a ‘kitchen sink’ approach of 129 different routines

• Most basic programs can get away with using six.

• As usual use #include “mpi.h” in C.

MPI_Init Initialise MPI computation

MPI_Finalize Terminate MPI computation

MPI_Comm_size Determine number of processes

MPI_Comm_rank Determine my process number

MPI_Send, MPI_Isend Blocking, non-blocking send

MPI_Recv, MPI_Irecv Blocking, non-blocking

CA463D Lecture Notes (Martin Crane 2013) 64

Common MPI Routines (Cont’d):

MPI Initialisation, Finalization
• In all MPI-written programs, MPI must be initialised before use, and

finalised at the end.

• All MPI-related commands and types must be handled within this

section of code:

MPI_Init Initialise MPI computation

MPI_Finalize Terminate MPI computation

• MPI_Init takes two parameters as input (argc and argv),

– It is used to start the MPI environment, create the default communicator (more

later) and assign a rank to each node.

• MPI_Finalize cleans up all MPI state. Once this routine is called,

no MPI routine (even MPI_INIT) may be called.

• The user must ensure that all pending communications involving a

process completes before the process calls MPI_Finalize.
CA463D Lecture Notes (Martin Crane 2013) 65

Common MPI Routines (Cont’d):

Basic Inquiry Routines
• At various stages in a parallel-implemented function, it may be useful

to know how many nodes the program is using, or what the rank of

the current node is.

• The MPI_Comm_size function returns the number of processes/

nodes as an integer, taking only one parameter, a communicator.

• In most cases you will only use the default Communicator:

MPI_COMM_WORLD.

• The MPI_Comm_rank function is used to determine what the rank

of the current process/node on a particular communicator.

• E.g. if there are two communicators, it is possible, and quite usual,

that the ranks of the same node would differ.

• Again, in most cases, this function will only be used with the default

communicator as an input (MPI_COMM_WORLD), and it will return (as

an integer) the rank of the node on that communicator.
CA463D Lecture Notes (Martin Crane 2013) 66

Common MPI Routines (Cont’d):

Point-to-Point communications in MPI

• This involves communication between two processors, one sending,

and the other receiving.

• Certain information is required to specify the message:

– Identification of sender processor

– Identification of destination/receiving processor

– Type of data (MPI_INT, MPI_FLOAT etc)

– Number of data elements to send (i.e. array/vector info)

– Where the data to be sent is in memory (pointer)

– Where the received data should be stored in (pointer)

CA463D Lecture Notes (Martin Crane 2013) 67

Common MPI Routines (Cont’d):

Sending data MPI_Send, MPI_Isend

• MPI_Send is used to perform a blocking send, (i.e. process waits for

the communication to finish before going to the next command).
int MPI_Send(void *buf, int count, MPI_Datatype datatype, int

dest, int tag, MPI_Comm comm)

• This functions takes six parameters:

– the location of the data to be sent i.e. a pointer (input parameter)

– the number of data elements to be sent (input parameter)

– the type of data e.g. MPI_INT, MPI_FLOAT, etc. (input parameter)

– the rank of the receiving/destination node (input parameter)

– a tag for identification of the communication (input parameter)

– the communicator to be used for transmission (input parameter)

• MPI_Isend is non-blocking, so an additional parameter, to allow for

verification of communication success is needed.

• It is a pointer to an element of type MPI_Request.

CA463D Lecture Notes (Martin Crane 2013) 68

Common MPI Routines (Cont’d):

Receiving data MPI_Recv, MPI_Irecv

• MPI_Recv is used to perform a blocking receive, (i.e. process waits

for the communication to finish before going to the next command).
int MPI_Recv(void *buf, int count, MPI_Datatype datatype, int

source, int tag, MPI_Comm comm, MPI_Status *status);

• This functions takes seven parameters:

– the location of the receive buffer i.e. a pointer (output parameter)

– the max number of data elements to be received (input parameter)

– the type of data e.g. MPI_INT, MPI_FLOAT, etc. (input parameter)

– the rank of the source/sending node (input parameter)

– a tag for identification of the communication (input parameter)

– the communicator to be used for transmission (input parameter)

– a pointer to a structure of type MPI_Status, contains source processor’s

rank, communication tag, and error status (output parameter)

• For the non-blocking MPI_Irecv, MPI_Request replaces

MPI_Status.
CA463D Lecture Notes (Martin Crane 2013) 69

A first MPI example: Hello World.

CA463D Lecture Notes (Martin Crane 2013) 70

#include <mpi.h>
int main(int argc, char *argv[]) {

int myid, size;
MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD, &myid);
MPI_Comm_size(MPI_COMM_WORLD, &size);
printf("process %d out of %d says Hello\n", myid, size);
MPI_Finalize();
return 0;

}

First “real” MPI program: Exchanging 2 Values

CA463D Lecture Notes (Martin Crane 2013) 71

#include <mpi.h>
int main(int argc, char *argv[]) {

int rank, value, size, length = 1, tag = 1;
MPI_Status status;

/* initialize MPI and get own id (rank) */
MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD, &myid);
MPI_Comm_size(MPI_COMM_WORLD, &size);
if (size!=2) {

printf("use exactly two processes\n");
exit(1);

}
if (myid == 0) {

otherid = 1; myvalue = 14;
}
else {

otherid = 0; myvalue = 25;
}

printf("process %d sending %d to process %d\n", myid, myvalue, otherid);
/* Send one integer to the other node (i.e. “otherid”) */
MPI_Send(&myvalue,1,MPI_INT,otherid,tag,MPI_COMM_WORLD);
/* Receive one integer from any other node */
MPI_Recv(&othervalue,1,MPI_INT,MPI_ANY_SOURCE,

MPI_ANY_TAG,MPI_COMM_WORLD, &status);
printf("process %d received a %d\n", myid, othervalue);
MPI_Finalize(); /* Terminate MPI */

return 0;
}

Compiling and Running MPI Programmes

• To compile programs using MPI, you need an “MPI-enabled” compiler.

• On our cluster, we use mpicc to compile C programs containing MPI

commands or mpicxx for C++.

• Before running an executable using MPI, you need to make sure the

"multiprocessing daemon" (MPD) is running.

• It makes the workstations into "virtual machines" to run MPI programs.

• When you run an MPI program, requests are sent to MPD daemons to

start up copies of the program.

• Each copy can then use MPI to communicate with other copies of the

same program running in the virtual machine. Just type “mpd &” in the

terminal.

• To run the executable, type “mpirun -np N./executable_file”,

where N is the number to be used to run the program.

• This value is then used in your program by MPI_Init to allocate the

nodes and create the default communicator.
CA463D Lecture Notes (Martin Crane 2013) 72

Example 3:“Ring” Communication

CA463D Lecture Notes (Martin Crane 2013) 73

#include <mpi.h>
int main(int argc, char *argv[]) {

int rank, value, size;
MPI_Status status;

/* initialize MPI and get own id (rank) */
MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
MPI_Comm_size(MPI_COMM_WORLD, &size);
do {

if (rank == 0) {
scanf("%d", &value);
/* Master Node sends out the value */
MPI_Send(&value, 1, MPI_INT, rank + 1, 0, MPI_COMM_WORLD);

}
else {
/* Slave Nodes block on receive the send on the value */

MPI_Recv(&value, 1, MPI_INT, rank - 1, 0, MPI_COMM_WORLD, &status);
if (rank < size - 1) {

MPI_Send(&value, 1, MPI_INT, rank + 1, 0, MPI_COMM_WORLD);
}

printf("process %d got %d\n", rank, value);
} while (value >= 0);
/* Terminate MPI */

MPI_Finalize();
return 0;

}

CA463D Lecture Notes (Martin Crane 2013) 74

#include <mpi.h>
int main(int argc, char *argv[]) {

int A[4][4], b[4], c[4], line[4],temp[4], local_value, myid;
MPI_Init(&argc, &argv); MPI_Comm_rank(MPI_COMM_WORLD, &myid);
if (myid == 0) {

for (int i=0; i<4; i++) {
b[i] = 4 – i;
for (int j=0; j<4; j++)

A[i][j] = i + j; /* set some notional values for A, b */
}
line[0]=A[0][0]; line[1]=A[0][1];
line[2]=A[0][2]; line[3]=A[0][3];

}
if (myid == 0) {

for (int i=1; i<4; i++) {/* slaves do most of the multiplication */
temp[0]=A[i][0];temp[1] = A[i][1];temp[2] = A[i][2];temp[3] = A[i][3];
MPI_Send(temp, 4, MPI_INT, i, i, MPI_COMM_WORLD);
MPI_Send(b, 4, MPI_INT, i, i, MPI_COMM_WORLD);

}
}
else {

MPI_Recv(line, 4, MPI_INT, 0, myid, MPI_COMM_WORLD, MPI_STATUS_IGNORE);
MPI_Recv(b, 4, MPI_INT, 0, myid, MPI_COMM_WORLD, MPI_STATUS_IGNORE);

} {/* master node does its share of multiplication too*/
c[myid] = line[0] * b[0] + line[1] * b[1] + line [2] * b[2] + line[3] * b[3];
if (myid != 0) {

MPI_Send(&c[myid], 1, MPI_INT, 0, myid, MPI_COMM_WORLD);
}
else {

for (int i=1; i<4; i++) {
MPI_Recv(&c[i], 1, MPI_INT, i, i, MPI_COMM_WORLD, MPI_STATUS_IGNORE);
}

}
MPI_Finalize();
return 0;

}

Example 4: Matrix-Vector

Product Implementation

CA463D Lecture Notes (Martin Crane 2013) 75

int main(int argc, char *argv[]) {
MPI_Init(&argc, &argv);
#define INT_MAX_ 1000000000
int myid, size, inside=0, outside=0, points=10000;
double x,y, Pi_comp, Pi_real=3.141592653589793238462643;
MPI_Comm_rank(MPI_COMM_WORLD, &myid);
MPI_Comm_size(MPI_COMM_WORLD, &size);
if (myid == 0) {

for (int i=1; i<size; i++) /* send out the value of points to all slaves */
MPI_Send(&points, 1, MPI_INT, i, i, MPI_COMM_WORLD);

}
else

MPI_Recv(&points, 1, MPI_INT, 0, i, MPI_COMM_WORLD, MPI_STATUS_IGNORE);
rands=new double[2*points];
for (int i=0; i<2*points; i++){

rands[i]=random();
if (rands[i]<=INT_MAX_) i++ /* this random is within range */

}
for (int i=0; i<points;i++){

x=rands[2*i]/INT_MAX_;
y=rands[2*i+1]/INT_MAX_;
if((x*x+y*y)<1) inside++ /* point is inside unit circle so incr var inside */

}
delete[] rands;
if (myid == 0) {

for (int i=1; i<size; i++) {
int temp; /* master receives all inside values from slaves */
MPI_Recv(&temp, 1, MPI_INT, i, i, MPI_COMM_WORLD, MPI_STATUS_IGNORE);
inside+=temp; } /* master sums all insides sent to it by slaves */

}
else

MPI_Send(&inside, 1, MPI_INT, 0, i, MPI_COMM_WORLD); /* send inside to master */
if (myid == 0) {

Pi_comp = 4 * (double) inside / (double)(size*points);
cout << "Value obtained: " << Pi_comp << endl << "Pi:" << Pi_real << endl;}

MPI_Finalize(); return 0;
}

Example 5: Pi

Calculation

Implementation

A
ll

 n
o

d
e

s
d

o
 t

h
is

 p
a

rt

Collective communications in MPI

• Groups are sets of processors that communicate with each other in a

certain way.

• Such communications permit a more flexible mapping of the language

to the problem (allocation of nodes to subparts of the problem etc).

• MPI implements Groups using data objects called Communicators.

• A special Communicator is defined (called ‘MPI_COMM_WORLDʼ) for the

group of all processes.

• Each Group member is identified by a number (its Rank 0..n-1).

• There are three steps to create new communication structures:

– accessing the group corresponding to MPI_COMM_WORLD,

– using this group to create sub-groups,

– allocating new communicators for this group.

• We will see this in more detail in the last examples.

CA463D Lecture Notes (Martin Crane 2013) 76

Some Sophisticated MPI Routines
• The advantage of the global communication routines below is that the

MPI system can implement them more efficiently than the programmer,

involving far less function calls.

• Also the system will have more opportunity to overlap message

transfers with internal processing and to exploit parallelism that might

be available in the communications network.

MPI_Barrier Synchronise

MPI_Bcast Broadcast same data to all procs

MPI_Gather Get data from all procs

MPI_Scatter Send different data to all procs

MPI_Reduce Combine data from all onto one proc

MPI_Allreduce Combine data from all procs onto all procs

CA463D Lecture Notes (Martin Crane 2013) 77

Sophisticated MPI Routines:

MPI_Barrier

• MPI_Barrier is used to synchronise a set of nodes.

int MPI_Barrier(MPI_Comm comm)

• It blocks the caller until all group members have called it.

• ie call returns at any process only after all group members have

entered the call.

• This functions takes only parameter, the communicator (i.e.

group of nodes) to be synchronised.

• As we previously saw with other functions, it will most of the

times be used with the default communicator,

MPI_COMM_WORLD.

CA463D Lecture Notes (Martin Crane 2013) 78

Sophisticated MPI Routines: MPI_Bcast
• MPI_Bcast used to send data from one node to all the others

in one single command.

int MPI_Bcast(void *buffer, int count, MPI_Datatype
datatype, int root, MPI_Comm comm)

• This functions takes five parameters: -

– location of data to be sent i.e. a pointer (input/output parameter)

– number of data elements to be sent (input parameter)

– type of data (input parameter)

– rank of the broadcast node (input parameter)

– communicator to be used (input parameter)

CA463D Lecture Notes (Martin Crane 2013) 79

Sophisticated MPI Routines: MPI_Gather
• MPI_Gather is used to gather on a single node data scattered over

a group of nodes.
int MPI_Gather(void *sendbuf, int sendcnt, MPI_Datatype sendtype,

void *recvbuf, int recvcnt, MPI_Datatype recvtype, int root,

MPI_Comm comm)

• This functions takes eight parameters: -

– location of data to be sent i.e. a pointer (input parameter)

– number of data elements to be sent (input parameter)

– type of data to be sent (input parameter)

– location of the receive buffer i.e. a pointer (output parameter)

– number of elements to be received (input parameter)

– type of data to be received (input parameter)

– rank of the sending node (input parameter)

– communicator to be used for

transmission. (input parameter)

CA463D Lecture Notes (Martin Crane 2013) 80

Sophisticated MPI Routines: MPI_Scatter
• MPI_Scatter used to scatter data from single node to a group

int MPI_Scatter(void *sendbuf, int sendcnt, MPI_Datatype

sendtype, void *recvbuf, int recvcnt, MPI_Datatype recvtype, int

root, MPI_Comm comm)

• This function takes eight parameters: -

– location of data to be sent i.e. a pointer (input parameter)

– number of data elements to be sent (input parameter)

– type of data to be sent (input parameter)

– location of the receive buffer i.e. a pointer (output parameter)

– number of elements to be received (input parameter)

– type of data to be received (input parameter)

– rank of the sending node (input parameter)

– communicator to be used for transmission. (input parameter)

CA463D Lecture Notes (Martin Crane 2013) 81

Sophisticated MPI Routines: MPI_Reduce

• MPI_Reduce used to reduce values on all nodes of a group to a

single value on one node using some reduction operation (sum etc).
int MPI_Reduce (void *sendbuf, void *recvbuf, int count,

MPI_Datatype datatype, MPI_Op op, MPI_Comm comm)

• This functions takes six parameters: -

– location of the data to be sent i.e. a pointer (input parameter)

– location of the receive buffer i.e. a pointer (output parameter)

– number of elements to be sent (input parameter)

– type of data e.g. MPI_INT,MPI_FLOAT, etc. (input parameter)

– operation to combine the results e.g. MPI_SUM (input parameter)

– communicator used for transmission (input parameter)

CA463D Lecture Notes (Martin Crane 2013) 82

Sophisticated MPI Routines: MPI_Allreduce
• MPI_Allreduce is used to reduce values on all group nodes to a one value, and

send it back to all (i.e. equals MPI_Reduce+MPI_Bcast)

int MPI_Allreduce (void *sendbuf, void *recvbuf, int count,

MPI_Datatype datatype, MPI_Op op, MPI_Comm comm)

• This functions takes six parameters: -

– location of the data to be sent i.e. a pointer (input parameter)

– location of the receive buffer i.e. a pointer (output parameter)

– number of elements to be sent (input parameter)

– type of data e.g. MPI_INT,MPI_FLOAT, etc. (input parameter)

– operation to combine the results e.g. MPI_SUM (input parameter)

– communicator used for transmission (input parameter)

CA463D Lecture Notes (Martin Crane 2013) 83

CA463D Lecture Notes (Martin Crane 2013) 84

#include <mpi.h>
int main(int argc, char *argv[]) {

int A[4][4], b[4], c[4], line[4],temp[4], local_value, myid;
MPI_Init(&argc, &argv); MPI_Comm_rank(MPI_COMM_WORLD, &myid);
if (myid == 0) {

for (int i=0; i<4; i++) {
b[i] = 4 – i;
for (int j=0; j<4; j++)

A[i][j] = i + j; /* set some notional values for A, b */
}
line[0]=A[0][0]; line[1]=A[0][1];
line[2]=A[0][2]; line[3]=A[0][3];

}

MPI_Bcast(b,4,MPI_INT,0,MPI_COMM_WORLD);
if (myid == 0) {

for (int i=0; i<4; i++) {/* slaves do most of the multiplication */
temp[0]=A[i][0];temp[1] = A[i][1];temp[2] = A[i][2];temp[3] = A[i][3];
MPI_Send(temp, 4, MPI_INT, i, i, MPI_COMM_WORLD);
/* No need to send vector b here */

}
}
else {

MPI_Recv(line, 4, MPI_INT, 0, myid, MPI_COMM_WORLD, MPI_STATUS_IGNORE);
/* No need to receive vector b here */

} {/* master node does its share of multiplication too*/
c[myid] = line[0] * b[0] + line[1] * b[1] + line [2] * b[2] + line[3] * b[3];
if (myid != 0) {

MPI_Send(&c[myid], 1, MPI_INT, 0, myid, MPI_COMM_WORLD);
}
else {

{
for (int i=1; i<4; i++) {

MPI_Recv(&c[i], 1, MPI_INT, i, i, MPI_COMM_WORLD, MPI_STATUS_IGNORE);
}

}
MPI_Finalize(); return 0;

}

Example 6: A New

Matrix-Vector Product

CA463D Lecture Notes (Martin Crane 2013) 85

int main(int argc, char *argv[]) {
MPI_Init(&argc, &argv);
#define INT_MAX_ 1000000000
int myid, size, inside=0, outside=0, points=10000;
double x,y, Pi_comp, Pi_real=3.141592653589793238462643;
MPI_Comm_rank(MPI_COMM_WORLD, &myid);
MPI_Comm_size(MPI_COMM_WORLD, &size);

/* Again send/receive replaced by MPI_Bcast */

MPI_Bcast(&points,1,MPI_INT, 0, MPI_COMM_WORLD);
rands=new double[2*points];
for (int i=0; i<2*points; i++){

rands[i]=random();
if (rands[i]<=INT_MAX_) i++ /* this random is within range */

}
for (int i=0; i<points;i++){

x=rands[2*i]/INT_MAX_;
y=rands[2*i+1]/INT_MAX_;
if((x*x+y*y)<1) inside++ /* point is inside unit circle so incr var inside */

}
delete[] rands;
if (myid == 0) {

for (int i=1; i<size; i++) {
int temp; /* master gets all inside values from slaves */
MPI_Recv(&temp, 1, MPI_INT, i, i, MPI_COMM_WORLD, MPI_STATUS_IGNORE);
inside+=temp; } /* master sums all insides sent to it by slaves */

}
else

MPI_Send(&inside, 1, MPI_INT, 0, i, MPI_COMM_WORLD); /* send inside to master */

MPI_Reduce(&inside,&total,1,MPI_INT,MPI_SUM,0, MPI_COMM_WORLD);
if (myid == 0) {

Pi_comp = 4 * (double) inside / (double)(size*points);
cout << "Value obtained: " << Pi_comp << endl << "Pi:" << Pi_real << endl;}

MPI_Finalize(); return 0;
}

Example 5: A New Pi

Calculation

Implementation

Using Communicators

CA463D Lecture Notes (Martin Crane 2013) 86

#include <mpi.h>
int main(int argc, char *argv[]) {

MPI_Comm comm_world, comm_worker;
MPI_Group group_world, group_worker;
comm_world = MPI_COMM_WORLD;
MPI_Comm_group(comm_world, &group_world);
MPI_Group_excl(group_world, 1, 0, &group_worker);

/* process 0 not member */
MPI_Comm_create(comm_world, group_worker, &comm_worker);

}

• Creating a new group (and communicator) by excluding

the first node:

• Warning:

MPI_Comm_create() is a collective operation, so all processes in the old

communicator must call it - even those not going in the new communicator.

Example 8: Using Communicators

CA463D Lecture Notes (Martin Crane 2013) 87

#include <mpi.h>
#include <stdio.h>
#define NPROCS 8
int main(int argc, char *argv[]) {

int rank, newrank, sendbuf, recvbuf;
ranks1[4]={0,1,2,3}, ranks2[4]={4,5,6,7};
MPI_Group orig_group, new_group;
MPI_Comm new_comm

MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
sendbuf = rank;

/* Extract the original group handle */
MPI_Comm_group(MPI_COMM_WORLD, &orig_group);
if (rank < NPROCS/2) {/* Split tasks into 2 distinct groups based on rank */

MPI_Group_incl(orig_group, NPROCS/2, ranks1, &new_group);
else

MPI_Group_incl(orig_group, NPROCS/2, ranks2, &new_group);
/* Create new communicator and then perform collective communications */
MPI_Comm_create(MPI_COMM_WORLD, new_group, &new_comm);
MPI_Allreduce(&sendbuf, &recvbuf, 1, MPI_INT, MPI_SUM, new_comm);
MPI_Group_rank (new_group, &new_rank);

printf(“rank= %d newrank= %d recvbuf= %d\n", rank, newrank, recvbuf);

MPI_Finalize();
}

• MPI programs need specific compilers (e.g. mpicc), MPD

and mpirun.

• MPI programs start with MPI_Init and finish with
MPI_Finalize,

• Four functions for point-to-point communication,

• Six more advanced functions, for synchronise, and perform

collective communication,

• Nine functions (at least three!) to create new groups and

communicators,

• Too many examples to remember everything.

CA463D Lecture Notes (Martin Crane 2013) 88

Final Reminder

